Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

A spherical balloon is inflated with gas at the rate of 500 cubic centimeters per minute. How fast is the radius of the balloon increasing at the instant the radius is 70 centimeters

Sagot :

Using implicit differentiation, it is found that the radius is increasing at a rate of 0.0081 cm per minute.

What is the volume of a sphere?

The volume of a sphere of radius r is given by:

[tex]V = \frac{4\pi r^3}{3}[/tex]

Applying implicit differentiation, the rate of change is given by:

[tex]\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt}[/tex]

In this problem, we have that:

[tex]\frac{dV}{dt} = 500, r = 70[/tex]

Hence the rate of change of the radius is given as follows:

[tex]\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt}[/tex]

[tex]19600\pi\frac{dr}{dt} = 500[/tex]

[tex]\frac{dr}{dt} = \frac{500}{19600\pi}[/tex]

[tex]\frac{dr}{dt} = 0.0081[/tex]

The radius is increasing at a rate of 0.0081 cm per minute.

More can be learned about implicit differentiation at https://brainly.com/question/25608353

#SPJ1