Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Using the normal distribution, it is found that there is a 0.877 = 87.7% probability of a bulb lasting for at most 569 hours.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
The mean and the standard deviation are given, respectively, by:
[tex]\mu = 540, \sigma = \sqrt{625} = 25[/tex]
The probability of a bulb lasting for at most 569 hours is the p-value of Z when X = 569, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{569 - 540}{25}[/tex]
Z = 1.16
Z = 1.16 has a p-value of 0.877.
0.877 = 87.7% probability of a bulb lasting for at most 569 hours.
More can be learned about the normal distribution at https://brainly.com/question/24663213
#SPJ1
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.