Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex]\dfrac{2x+4}{x(x+2)(x-4)} \equiv \dfrac{1}{2(x-4)}-\dfrac{1}{2x}[/tex]
Step-by-step explanation:
Partial Fractions
Write out the expression as an identity:
[tex]\begin{aligned}\dfrac{2x+4}{x(x+2)(x-4)} & \equiv \dfrac{A}{x}+\dfrac{B}{(x+2)}+\dfrac{C}{(x-4)}\\\\\implies \dfrac{x(2x+4)(x+2)(x-4)}{x(x+2)(x-4)} & \equiv \dfrac{Ax(x+2)(x-4)}{x}+\dfrac{Bx(x+2)(x-4)}{(x+2)}+\dfrac{Cx(x+2)(x-4)}{(x-4)}\\\\\implies 2x+4 & \equiv A(x+2)(x+4)+ Bx(x-4)+Cx(x+2)\end{aligned}[/tex]
Calculate the values of A, B and C using substitution:
[tex]\begin{aligned}2x+4 & = A(x+2)(x-4)+Bx(x-4)+Cx(x+2)\\\\x=4 \implies 12 & = A(0)+B(0)+C(24)\implies C=\dfrac{1}{2}\\\\x=-2 \implies 0 & = A(0)+B(12)+C(0) \implies B=0\\\\ x=0 \implies 4 & = A(-8)+B(0)+C(0) \implies A=-\dfrac{1}{2}\end{aligned}[/tex]
Replace A, B and C in the original identity:
[tex]\begin{aligned}\dfrac{2x+4}{x(x+2)(x-4)} & \equiv \dfrac{A}{x}+ \dfrac{B}{(x+2)}+\dfrac{C}{(x-4)}\\\\& \equiv -\dfrac{1}{2x}+\dfrac{1}{2(x-4)}\\\\\implies \dfrac{2x+4}{x(x+2)(x-4)}& \equiv \dfrac{1}{2(x-4)}-\dfrac{1}{2x}\end{aligned}[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.