Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

P(A1) = .20, P(A2) = .40, P(A3) = .40, P(B1 | A1) = .25, P(B1 | A2) = .05, and P(B1 | A3) = .10. Use Bayes’ theorem to determine P(A3 | B1).

Sagot :

Answer:The result follows from manipulating the conditional probability. By definition,

By the law of total probability,

So we have

Step-by-step explanation:

P(A|B) = P(B|A)×P(A)/P(B)

so, in our case

P(A3|B1) = P(B1|A3)×P(A3)/P(B1) = 0.1×0.4/P(B1)

I assume that the problem definition means that A1, A2, A3 are independent and not overlapping events (hence their sum is 1). and therefore, B1 can only happen after A1 or after A2 or after A3. there is no other possibility for B1 to happen.

so,

P(B1) = P(B1|A1) + P(B1|A2) + P(B1|A3) =

= 0.25 + 0.05 + 0.1 = 0.4

therefore,

P(A3|B1) = P(B1|A3)×P(A3)/P(B1) = 0.1×0.4/0.4 = 0.1

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.