Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
I assume by f¹, you actually mean f⁻¹ as in the inverse of f. I also assume you are asked to find f(x) (as in the inverse of f⁻¹) and f⁻¹(4).
Given that
[tex]f^{-1}(x+2) = \dfrac{x-1}{x+1}[/tex]
with x ≠ 1, we can find f⁻¹(x) by replacing x + 2 with x :
[tex]f^{-1}(x + 2) = \dfrac{x-1}{x+1} = \dfrac{(x+2) - 3}{(x + 2) - 1} \implies f^{-1}(x) = \dfrac{x-3}{x-1}[/tex]
Then when x = 4, we have
[tex]f^{-1}(4) = \dfrac{4-3}{4-1} = \dfrac13[/tex]
Of course, we also could have just substituted x = 2 into the definition of f⁻¹(x + 2) :
[tex]f^{-1}(4) = f^{-1}(2+2) = \dfrac{2-1}{2+1} = \dfrac13[/tex]
To find f(x), we fall back to the definition of an inverse function:
[tex]f^{-1}\left(f(x)\right) = x[/tex]
Then by definition of f⁻¹, we have
[tex]f^{-1}\left(f(x)\right) = \dfrac{f(x)-3}{f(x)-1} = x[/tex]
Solve for f :
[tex]f(x) - 3 = x (f(x) - 1)[/tex]
[tex]f(x) - 3 = x f(x) - x[/tex]
[tex]f(x) - x f(x) = 3 - x[/tex]
[tex](1 - x) f(x) = 3-x[/tex]
[tex]f(x) = \dfrac{3-x}{1-x} = \dfrac{x-1}{x-3}[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.