Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
I'm going to assume the limit is
[tex]\displaystyle \lim_{x\to3} \frac{\sqrt{x+1} - 2}{x - 3}[/tex]
since problems like this usually involve indeterminate forms, and
√(x + 1) - 2 = x - 3 = 0
when x = 3.
To get around the discontinuity in the limand at x = 3, rationalize the numerator:
[tex]\dfrac{\sqrt{x+1} - 2}{x - 3} \times \dfrac{\sqrt{x + 1} + 2}{\sqrt{x + 1} + 2} = \dfrac{\left(\sqrt{x+1}\right)^2 - 2^2}{(x-3) \left(\sqrt{x+1}+2\right)} = \dfrac{x-3}{(x-3)\left(\sqrt{x+1}+2\right)}[/tex]
Now as x approaches 3, the factors of x - 3 cancel, the resulting limand is continuous at x = 3, and we have
[tex]\displaystyle \lim_{x\to3} \frac{\sqrt{x+1} - 2}{x - 3} = \lim_{x\to3} \frac1{\sqrt{x+1}+2} = \boxed{\frac14}[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.