Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Neither of these statements are true.
x/∞ = 0 is a nonsensical statement. It's more accurate to say
[tex]\displaystyle \lim_{y\to\infty} \frac xy = 0[/tex]
for any real number x. The important bit is that y is an arbitrarily large number as it approaches ∞. To convince yourself that this expression approaches 0 as y gets larger and larger, try fixing x and pick any increasing sequence of numbers for y.
For example, let x = 1 and take y from the sequence of increasing powers of 10, {10, 10², 10³, …}, which grows without bound. Then
1/10 = 0.1
1/10² = 0.01
1/10³ = 0.001
and so on. Naturally, the larger the power of 10 and thus the larger y gets, the closer x/y gets to 0.
Similarly, x/0 is nonsense, but the "limit-ized" version of the claim is also incorrect. For any fixed real number x, the limit
[tex]\displaystyle \lim_{y\to0} \frac xy[/tex]
does not exist. Suppose x > 0. If y approaches 0 from above, then y > 0 and x/y > 0 and
[tex]\displaystyle \lim_{y\to0^+} \frac xy = +\infty[/tex]
which you can convince yourself is true by reversing the example from before. Let x = 1 and take y from the sequence of decreasing powers of 10, {1/10, 1/10², 1/10³, …}, which converges to 0. Then
1/(1/10) = 10
1/(1/10²) = 100
1/(1/10³) = 1000
and so on. The smaller y gets (while still being positive), the larger x/y becomes.
But now suppose y < 0 and that y approaches 0 from below. Then x/y < 0, and
[tex]\displaystyle \lim_{y\to0^-} \frac xy = -\infty[/tex]
The limits from either side do not match, so the limit as y approaches 0 does not exist.
You can use the same reasoning for when x < 0.
The case of x = 0 is special, however. Since y is approaching 0, it's never actually the case that y = 0. 1/y is then some non-zero real number, and multiplying it by x = 0 makes x/y = 0. Then
[tex]\displaystyle \lim_{y\to0} \frac 0y = 0[/tex]
So in general,
[tex]\displaystyle \lim_{y\to0} \frac xy = \begin{cases}0 & \text{if }x = 0 \\ \text{does not exist} & \text{otherwise}\end{cases}[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.