Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

A multiple-choice examination has 10 questions, each with four possible answers, only one of which is correct. Suppose that one of the students who takes the examination answers each of the questions with an independent random guess. What is the probability that he answers at least six questions correctly?​

Sagot :

Answer:

[tex]0.0197277[/tex]

Step-by-step explanation:

Consider the random variable X 

Where X denotes the number of (success/having a correct answer)

in 10 identical and independent trials .

then

X follows the Binomial distribution with parameters 

10 and  p = p(success) = 1/4

[tex]p\left( X\geq 6\right) =\sum^{10}_{k=6} p\left( X=k\right)[/tex]

               [tex]=\sum^{10}_{k=6} C^{k}_{10}\left( \frac{1}{4} \right)^{k} \left( \frac{3}{4} \right)^{10-k}[/tex]

               [tex]=\frac{20686}{2^{20}} \\= 0.0197277[/tex]

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.