Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Using the binomial distribution, it is found that the probability she will hit at least one balloon with her five darts is:
(1) 41%.
What is the binomial distribution formula?
The formula is:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem, we have that:
- The probability of a single dart hitting is of p = 1/10 = 0.1.
- She will throw five darts, hence n = 5.
The probability of hitting at least one is given by:
[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]
In which:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{5,0}.(0.1)^{0}.(0.9)^{5} = 0.59[/tex]
Then:
[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.59 = 0.41[/tex]
Which means that option 1 is correct.
More can be learned about the binomial distribution at https://brainly.com/question/24863377
#SPJ1
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.