Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
Given:-
The algebraic form of an arithmetic sequence is 4n+1.
To find:-
common difference.
first term
remainder when each term of the sequence is divided by 4.
Solution:-
Given,
and n = 1,2,3...
Now,
If n = 2,
The sequence is 5 ,9,13..
Hence, the first term is 5.
Common difference :
=> d =
=> 9- 5
=> d = 4.
Hence, common difference is 4.
Remainder :
=> 5/4 = 4(4) +1
Here, remainder =1
=> 9/4 = 4(2)+1
Here, remainder =1
=> 13/4 = 4 (3)+1
Here , remainder = 1.
Therefore, the remainder when each term of this sequence is divided by 4 is 1 .
Step-by-step explanation:
Answer:
Below in bold.
Step-by-step explanation:
The nth term = a + d(n - 1) where a = first term and d = common difference
= dn + a - d
So comparing this to 4n + 1:
a) d = 4
b) a - d = a - 4 = 1
so a first term = 5.
c) (4n + 1) / 4 = n remainder 1
The remainder is 1.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.