Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
well, we know that θ is in the III Quadrant, where the sine is negative and the cosine is negative as well, or if you wish, where "x" as well as "y" are both negative, now, the hypotenuse or radius of the circle is just a distance amount, so is never negative, so in the equation of cos(θ) = - (2/5), the negative must be the adjacent side, thus
[tex]cos(\theta)=\cfrac{\stackrel{adjacent}{-2}}{\underset{hypotenuse}{5}}\qquad \textit{let's find the \underline{opposite side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{5^2 - (-2)^2}=b\implies \pm\sqrt{25-4}\implies \pm\sqrt{21}=b\implies \stackrel{III~Quadrant}{-\sqrt{21}=b}[/tex]
[tex]\dotfill\\\\ csc(\theta)\implies \cfrac{\stackrel{hypotenuse}{5}}{\underset{opposite}{-\sqrt{21}}}\implies \stackrel{\textit{rationalizing the denominator}}{-\cfrac{5}{\sqrt{21}}\cdot \cfrac{\sqrt{21}}{\sqrt{21}}\implies -\cfrac{5\sqrt{21}}{21}} \\\\\\ tan(\theta)=\cfrac{\stackrel{opposite}{-\sqrt{21}}}{\underset{adjacent}{-2}}\implies tan(\theta)=\cfrac{\sqrt{21}}{2}[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.