At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Using the normal distribution, it is found that there is a 0.0436 = 4.36% probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
In this problem, the mean and the standard deviation are given, respectively, by:
[tex]\mu = 2.8, \sigma = 0.7[/tex].
The probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters is one subtracted by the p-value of Z when X = 4, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{4 - 2.8}{0.7}[/tex]
Z = 1.71
Z = 1.71 has a p-value of 0.9564.
1 - 0.9564 = 0.0436.
0.0436 = 4.36% probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters.
More can be learned about the normal distribution at https://brainly.com/question/24663213
#SPJ1
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.