Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

The angles in a quadrilateral are 4y - 10°, y + 40°, 3y + 20° and 2y + 10° in order as you go around the quadrilateral.
a) Set up and solve an equation, to find the value of y.
b) Hence work out the value of each angle.
c) What type of quadrilateral is this?


Sagot :

Answer:

see explanation

Step-by-step explanation:

the sum of the interior angles of a quadrilateral = 360°

sum the 4 angles and equate to 360

4y - 10 + y + 40 + 3y + 20 + 2y + 10 = 360 , that is

10y + 60 = 360 ( subtract 60 from both sides )

10y = 300 ( divide both sides by 10 )

y = 30

then 4 angles are

4y - 10 = 4(30) - 10 = 120 - 10 = 110°

y + 40 = 30 + 40 = 70°

3y + 20 = 3(30) + 20 = 90 + 20 = 110°

2y + 10 = 2(30) + 10 = 60 + 10 = 70°

Since the angles measures are in order around the quadrilateral, then

the opposite angles are congruent, thus quadrilateral is a parallelogram