Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answers:
k = -3.5
Intersection point is (0.5, -2.5)
================================================
Explanation:
Apply the derivative to y=2x^2-3 and you should get dy/dx = 4x
The derivative helps determine the slope of the tangent at any point on the curve.
The slope of the tangent line y = 2x+k is 2.
We want the slope of the tangent to be 2, so we'll replace the dy/dx with 2 and solve for x.
dy/dx = 4x
2 = 4x
x = 2/4
x = 0.5
Plug this into the curve's original equation.
y = 2x^2 - 3
y = 2(0.5)^2 - 3
y = -2.5
Therefore, the tangent line y = 2x+k and the curve y = 2x^2-3 intersect at the point (0.5, -2.5). This is the point of tangency.
We'll use the coordinates of this point to determine k.
y = 2x+k
-2.5 = 2(0.5) + k
-2.5 = 1 + k
k = -2.5-1
k = -3.5
Visual verification is shown below. I used GeoGebra to make the graph, but you could use any other tool you prefer (such as Desmos).

Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.