Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]
[tex] \textbf{Let's see if the sequence is Arithmetic or Geometric :} [/tex]
[tex] \textsf{If the difference between successive terms is } [/tex] [tex] \textsf{equal then, the terms are in AP} [/tex]
- [tex] \sf{ \dfrac{14}{3}- \dfrac{13}{3} = \dfrac{1}{3}} [/tex]
- [tex] \sf{ {5}{}- \dfrac{14}{3} = \dfrac{15-14}{3} =\dfrac{1}{3}} [/tex]
[tex] \textsf{Since the common difference is same, } [/tex] [tex] \textsf{we can infer that it's an Arithmetic progression} [/tex] [tex] \textsf{with common difference of } \sf \dfrac{1}{3} [/tex]
Answer:
Arithmetic with common difference of [tex]\sf \frac{1}{3}[/tex]
Step-by-step explanation:
[tex]\textsf{Given sequence}=4, \dfrac{13}{3}, \dfrac{14}{3}, 5, \dfrac{16}{3},...[/tex]
If a sequence is arithmetic, the difference between consecutive terms is the same (this is called the common difference).
If a sequence is geometric, the ratio between consecutive terms is the same (this is called the common ratio).
[tex]\sf 4\quad \overset{+\frac{1}{3}}{\longrightarrow}\quad\dfrac{13}{3}\quad \overset{+\frac{1}{3}}{\longrightarrow}\quad \dfrac{14}{3}\quad \overset{+\frac{1}{3}}{\longrightarrow}\quad 5\quad \overset{+\frac{1}{3}}{\longrightarrow}\quad \dfrac{16}{3}[/tex]
As the difference between consecutive terms is [tex]\sf \frac{1}{3}[/tex] then the sequence is arithmetic with common difference of [tex]\sf \frac{1}{3}[/tex]
General form of an arithmetic sequence: [tex]\sf a_n=a+(n-1)d[/tex]
where:
- [tex]\sf a_n[/tex] is the nth term
- a is the first term
- d is the common difference between terms
Given:
- a = 4
- [tex]\sf d=\dfrac{1}{3}[/tex]
So the formula for the nth term of this sequence is:
[tex]\implies \sf a_n=4+(n-1)\dfrac{1}{3}[/tex]
[tex]\implies \sf a_n=\dfrac{1}{3}n+\dfrac{11}{3}[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.