Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The sequences of transformations that could be applied to the parent function are (e) Reflect over the y-axis, vertically stretch by a factor of 2, and then shift up 6 units
How to determine the sequence of transformation?
The graph that completes the question is added as an attachment
From the attached graph, we have the following points
(3, 0) and (0, 6)
Calculate the equation of the line using
[tex]g(x) = \frac{y_2 - y_1}{x_2 -x_1} * (x - x_2) + y_2[/tex]
This gives
[tex]g(x) = \frac{6 - 0}{0 -3} * (x - 0) + 6[/tex]
Evaluate the quotient
g(x) = -2 * (x) + 6
Expand
g(x) = -2x + 6
This means that the equation of the line is:
g(x) = -2x + 6
So, we have:
f(x) = x as the parent function and g(x) = -2x + 6 as the transformed function.
The transformations from f(x) to g(x) are as follows:
- Reflect over the y-axis i.e. f'(x) = -f(x) = -x
- Stretch vertically by a factor of 2 i.e. f"(x) = 2f'(x) = -2x
- Shift up by 6 units i.e. g(x) = f"(x) + 6 = -2x + 6
Hence, the sequences of transformations that could be applied to the parent function are (e) Reflect over the y-axis, vertically stretch by a factor of 2, and then shift up 6 units
Read more about transformation at:
https://brainly.com/question/13810353
#SPJ1

We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.