Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex]90^{\circ}[/tex]. In other words, these two vectors are perpendicular (orthogonal) to one another.
Step-by-step explanation:
Let [tex]\|a\|[/tex] and [tex]\|b\|[/tex] denote the magnitudes of vector [tex]a[/tex] and vector [tex]b[/tex]. The dot product between these two vectors is represented as [tex]a^{T}\, b[/tex]. Let [tex]\theta[/tex] denote the angle between the two vectors. The cosine of this angle would be equal to:
[tex]\begin{aligned}\cos(\theta) &= \frac{a^{T}\, b}{\|a\| \|b\|}\end{aligned}[/tex].
The dot product between vector [tex]a = \langle 1,\, 2\rangle[/tex] and [tex]b = \langle 1,\, -1/2\rangle[/tex] is:
[tex]\begin{aligned}a^{T}\, b &= {\begin{bmatrix}1 \\ 2\end{bmatrix}}^{T}\, \begin{bmatrix}1 \\ -1/2\end{bmatrix} \\ &= 1 \times 1 + 2 \times \left(-\frac{1}{2}\right) \\ &= 0\end{aligned}[/tex].
The magnitudes of the two vectors are:
[tex]\begin{aligned}\| a \| &= \sqrt{1^{2} + 2^{2}} \\ &= 5\end{aligned}[/tex].
[tex]\begin{aligned}\| b \| &= \sqrt{1^{2} + \left(-\frac{1}{2}\right)^{2}} \\ &= \frac{1}{2}\, \sqrt{5}\end{aligned}[/tex].
Therefore:
[tex]\begin{aligned}\cos(\theta) &= \frac{a^{T}\, b}{\|a\| \|b\|} \\ &= \frac{0}{5 \times (\sqrt{5} / 2)} \\ &= 0\end{aligned}[/tex].
Among all angles between [tex]0^{\circ}[/tex] and [tex]180^{\circ}[/tex], the only angle with a cosine of [tex]0[/tex] is [tex]90^{\circ}[/tex]. Therefore, the angle between vector [tex]a[/tex] and vector [tex]b[/tex] must be [tex]90^{\circ}\![/tex]. Hence, these two vectors are perpendicular to one another.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.