Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The length of the arc which subtends a [tex]\pi/3[/tex] radians angle on a circle with 6 ft radius is given by: Option C: 6.3 feet approximately.
How to find the relation between angle subtended by the arc, the radius and the arc length?
[tex]2\pi^c = 360^\circ = \text{Full circumference}[/tex]
The superscript 'c' shows angle measured is in radians.
If radius of the circle is of r units, then:
[tex]1^c \: \rm covers \: \dfrac{circumference}{2\pi} = \dfrac{2\pi r}{2\pi} = r\\\\or\\\\\theta^c \: covers \:\:\: r \times \theta \: \rm \text{units of arc}[/tex]
For this case, we have:
- Radius of the circle = r = 6 ft
- Angle subtended by the considered arc of the circle on its center = [tex]\theta^c = \dfrac{\pi}{3}^c[/tex]
Thus, if we take:
Length of the arc = L feet, then:
[tex]L =r \times \theta = 6 \times \dfrac{\pi}{3} = 2\pi \: \rm ft \approx 6.28 \approx 6.3 \: ft[/tex]
Thus, the length of the arc which subtends a [tex]\pi/3[/tex] radians angle on a circle with 6 ft radius is given by: Option C: 6.3 feet approximately.
Learn more about arc length here:
https://brainly.com/question/12058177
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.