Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The expression that is most useful for finding the year where the population was at a minimum would be 8(x − 9)² + 216.
Given expression 8x² − 144x + 864 is used to approximate a small town's population in thousands from 1998 to 2018, where x represents the number of years since 1998.
What is a quadratic equation?
A quadratic equation is the second-order degree algebraic expression in a variable. the standard form of this expression is ax² + bx + c = 0 where a. b are coefficients and x is the variable and c is a constant.
Given expression is 8x² − 144x + 864
Let y = 8x² − 144x + 864
also, y - 864 = 8x² - 144x
by Extracting common factor 8 on the right side
y - 864 = 8(x² - 18x)
Add (18/2)² on both sides, we get
y - 864 + 8(18/2)² = 8 (x² - 18x + 81²)
y - 864 + 648 = 8 (x² - 8x + 9)
on simplification
y - 216 = 8 (x - 9)²
y = 8(x - 9)² + 216
therefore, y = 8 (x - 9)² + 216
The expression that is most useful for finding the year where the population was at a minimum would be 8(x − 9)² + 216.
Learn more about a quadratic equation here:
brainly.com/question/2263981
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.