Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The period of the given function is T = 2π
What is the period of the function?
The period T of a function f(x) is such that:
f(x + T) = f(x).
In this case, our function is:
f(θ) = e^{iθ}
Remember that this can be written as:
f(θ) = cos(θ) + i*sin(θ)
So yes, this is in did a periodic function.
Then the period of the function f(θ) is the same as the period of the cosine and sine functions, which we know is T = 2π.
If you want to learn more about periodic functions, you can read:
https://brainly.com/question/26449711
The period of the considered function f(θ) = e^{iθ} is found to be P = 2π (assuming 'i' refers to 'iota' and 'e' refers to the base of the natural logarithm)
What is euler's formula?
For any real value θ, we have:
[tex]e^{i\theta} = \cos(\theta) + i\sin(\theta)[/tex]
where 'e' is the base of the natural logarithm, and 'i' is iota, the imaginary unit.
What are periodic functions?
Functions which repeats their values after a fixed interval, are called periodic function.
For a function [tex]y = f(x)[/tex], it is called periodic with period 'T' if we have:
[tex]y = f(x) = f(x + T) \: \forall x \in D(f)[/tex]
where D(F) is the domain of the function f.
Suppose that, the period of the function [tex]f(\theta) = e^{i \theta}[/tex] be P, then we get:
[tex]f(\theta + P) = f(\theta)\\\\e^{i(\theta)} = e^{i(\theta + P)}\\\\\cos(\theta) + i\sin(\theta) = \cos(\theta + P) + i\sin(\theta + P)[/tex]
When two complex numbers are equal, then their real parts are equal and their imaginary parts are equal.
That means,
[tex]\cos(\theta) + i\sin(\theta) = \cos(\theta + P) + i\sin(\theta + P)[/tex] implies that:
[tex]\cos(\theta) = \cos(\theta + P)\\\sin(\theta) = \sin(\theta + P)[/tex]
Also, we know that the period of sine and cosine function is [tex]2\pi[/tex]
Thus, we get:
[tex]P = 2\pi[/tex]
Thus, the period of the function [tex]f(\theta) = e^{i \theta}[/tex] is P = 2π
Learn more about periodic functions here:
brainly.com/question/12529476
#SPJ4
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.