Answered

Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

[tex]\boxed{\large{\sf Hello\: Brainlians}}[/tex]


Find the derivative of the below function using first principle

[tex]\\ \rm\rightarrowtail f(x)=\sqrt{sinx}[/tex]

Note:-

Spams/irrelevant/incomplete/copied /wrong answers will be deleted on the spot.



Don't add incomplete answer ,solve with proper explanation and all steps .




Sagot :

Answer:

[tex]\frac{cosx}{2\sqrt{sinx} }[/tex]

Step-by-step explanation:

The answer is in the attachment,

View image Nepalieducation
View image Nepalieducation
Baraq

From the definition,

f¹ (x) = Lin f(x+h) - f(x)

Solution

f(x) =√sinx

f¹(x) = f(x+h) - f(x) \ h

√sin (x+h) - √sinx\h

let,

sin (x+h) = u+k

f sin x = u

k = (u+k) - u........i

= sin(x+h) - sin x........ii

h......0 = k......0...........iii

√u+k -√u\h

√u+k-√u\x. • k\h

√u+k-√u\k sin (x+h) - sinx\h

{(√u+k)²-(√u)²\k√u+k+√u}

2cos(x+h/2) sin (h/2)\h

1\√u+√u • 1 cos(x+0)

¹/2√u cos x

¹/2√sinx cos x (u= sin x)

f¹(x) = cos x/2√sinx

Therefore, the answer is cos x/2sinx.

learn more about fraction: https://brainly.com/question/78672

We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.