Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The inequality describes the possible values of the variable x as being
larger than [tex]1\frac{8}{9}[/tex]
Part 1:
[tex]x \geq \underline{1\frac{8}{9}}[/tex]
Part 2: x is the set of all real numbers greater than [tex]\underline{1\frac{8}{9}}[/tex]
Part 3: The solution set includes 2, and 3
By testing, we have;
When x = 2; -3×(2 - 2) = 0 ≤ 1/3;
When x = 3; -3 × (3 - 2) = -3 ≤ 1/3
How to find the solution and test the inequality?
The given inequality is -3·(x - 2) ≤ 1/3
Part 1:
The solution of the inequality can be found by making x the subject of the inequality as follows;
-3·(x - 2) ≤ 1/3
[tex](x - 2) \geq \dfrac{1}{3 \times (-3)} = -\dfrac{1}{9}[/tex]
- [tex]x \geq -\dfrac{1}{9} + 2 = \dfrac{17}{9} = 1\frac{8}{9}[/tex]
[tex]x \geq \underline{1\frac{8}{9}}[/tex]
Part 2: The verbal statement describing the solution of the inequality is as follows;
- The solution of the inequality is that the value of x is the set of all real numbers greater than [tex]\underline{1\frac{8}{9}}[/tex]
Part 3: The elements of the solution set which are numbers greater than [tex]1\frac{8}{9}[/tex] include 2, and 3
By testing, we have;
When x = 2; -3×(2 - 2) = 0 ≤ 1/3;
When x = 3, we have;
-3 × (3 - 2) = -3 ≤ 1/3
Learn more about inequalities here:
https://brainly.com/question/5183393
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.