Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The direction of Beatriz relative to the starting point of her trip is approximately [tex]278.806^{\circ}[/tex].
How to find the position of Beatriz relative to the starting point of her trip
After a careful reading of the statement, we find that final position ([tex]\vec r[/tex]) by the end of the second day is found by means of this vector sum:
[tex]\vec r = \vec r_{1} + \vec r_{2}[/tex] (1)
Where:
- [tex]\vec r_{1}[/tex] - Vector distance of the first day relative to starting point, in kilometers.
- [tex]\vec r_{2}[/tex] - Vector distance of the second day relative to the final point of [tex]\vec r_{1}[/tex], in kilometers.
If we know that [tex]\vec r_{1} = (200\,km \cdot \cos 300^{\circ}, 200\,km\cdot \sin 300^{\circ})[/tex] and [tex]\vec r_{2} = (150\,km\cdot \cos 250^{\circ}, 150\,km\cdot \sin 250^{\circ})[/tex], then final position of Beatriz relative to origin is:
[tex]\vec r = (200\,km\cdot \cos 300^{\circ}, 200\,km\cdot \sin 300^{\circ})+(150\,km \cdot \cos 250^{\circ}, 150\,km\cdot \sin 250^{\circ})[/tex]
[tex]\vec r = (48.670, -314.159)\,[km][/tex]
And the direction relative to the starting point ([tex]\theta[/tex]), in degrees, is found by following inverse trigonometric relation:
[tex]\theta = \tan^{-1} \frac{r_{y}}{r_{x}}[/tex] (2)
If we know that [tex]r_{x} = 48.670\,km[/tex] and [tex]r_{y} = -314.159\,km[/tex], then the direction of Beatriz relative to the starting point of her trip is:
[tex]\theta = \tan^{-1} \left(\frac{-314.159\,km}{48.670\,km} \right)[/tex]
[tex]\theta \approx 278.806^{\circ}[/tex]
The direction of Beatriz relative to the starting point of her trip is approximately [tex]278.806^{\circ}[/tex]. [tex]\blacksquare[/tex]
To learn more on vectors, we kindly invite to check this verified question: https://brainly.com/question/21925479
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.