Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Using a geometric sequence, it is found that the rule for the number of matches played in the nth round is given by:
[tex]a_n = 64\left(\frac{1}{2}\right)^n[/tex]
The rule makes sense for values of n of at most 6, as in the last round, which is the 6th and final round, 1 game is played.
What is a geometric sequence?
A geometric sequence is a sequence in which the result of the division of consecutive terms is always the same, called common ratio q.
The nth term of a geometric sequence is given by:
[tex]a_n = a_1q^{n-1}[/tex]
In which [tex]a_1[/tex] is the first term.
In this problem, we have that:
- In the first round of the tournament, 64 matches are played, hence the first term is [tex]a_1 = 64[/tex].
- In each successive round, the number of matches played decreases by one half, hence the common ratio is [tex]q = \frac{1}{2}[/tex].
Thus, the rule is:
[tex]a_n = 64\left(\frac{1}{2}\right)^n[/tex]
The last round is the final, in which 1 game is played, hence:
[tex]1 = 64\left(\frac{1}{2}\right)^n[/tex]
[tex]\left(\frac{1}{2}\right)^n = \frac{1}{64}[/tex]
[tex]\left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^6[/tex]
[tex]n = 6[/tex]
Hence, the rule makes sense for values of n of at most 6, as in the last round, which is the 6th and final round, 1 game is played.
More can be learned about geometric sequences at https://brainly.com/question/11847927
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.