Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Probability of an event is the measure of its chance of occurrence. The event out of the listed events whose probability is 0.2957 is given by : Option C: [tex]P(0.25 \leq Z \leq 1.25)[/tex]
How to get the z scores?
If we've got a normal distribution, then we can convert it to standard normal distribution and its values will give us the z-score.
If we have
[tex]X \sim N(\mu, \sigma)[/tex]
(X is following normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] )
then it can be converted to standard normal distribution as
[tex]Z = \dfrac{X - \mu}{\sigma}, \\\\Z \sim N(0,1)[/tex]
(Know the fact that in continuous distribution, probability of a single point is 0, so we can write
[tex]P(Z \leq z) = P(Z < z) )[/tex]
Also, know that if we look for Z = z in z tables, the p-value we get is
[tex]P(Z \leq z) = \rm p \: value[/tex]
Using the z-table, we get the needed probabilities as:
Case 1:
[tex]P(-1.25 \leq Z \leq 0.25) = P(Z \leq 0.25) - P(Z \leq -1.25) \approx 0.5987 - 0.1056 = 0.4931[/tex]
Case 2:
[tex]P(-1.25 \leq Z \leq 0.75) = P(Z \leq 0.75) - P(Z \leq -1.25) \approx 0.7734- 0.1056=0.6678[/tex]
Case 3:
[tex]P(0.25 \leq Z \leq 1.25) = P(Z \leq 1.25) - P(Z \leq 0.25) \approx 0.8944 - 0.5987=0.2957[/tex]
Case 4:
[tex]P(0.75 \leq Z \leq 1.25) = P(Z \leq 1.25) - P(Z \leq 0.75) \approx 0.8944 - 0.7734 =0.1210[/tex]
Thus, the event out of the listed events whose probability is 0.2957 is given by : Option C: [tex]P(0.25 \leq Z \leq 1.25)[/tex]
Learn more about z-scores here:
https://brainly.com/question/13299273
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.