Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Solution:
Step-1: Find the slope of the line.
Formula of slope: y₂ - y₁/x₂ - x₁
- y₂ - y₁/x₂ - x₁ = Slope
- => -2 - (-5)/-8 - (-4) = Slope
- => -2 + 5/-8 + 4 = Slope
- => 3/-4 = Slope
Step-2: Use the point slope formula to determine the slope.
Point slope form formula: y - y₁ = m(x - x₁)
- y - y₁ = m(x - x₁) = Equation of line
- => y - (-5) = -3/4{x - (-4)} = Equation of line
- => y + 5 = -3/4{x + 4} = Equation of line
- => y + 5 = -3x/4 - 3 = Equation of line
- => y = -3x/4 - 8 = Equation of line
The equation of the line is y = -3x/4 - 8.
To find the equation, First step is to find the slope which we can use in the formula and then we will find the equation using the specific formula...
Finding slope ⤵️
[tex] \boxed{ \sf \:m = \frac{ y_{2} - y_{1} }{ x_{2} - x_{1}} }[/tex]
- (x1,y1) = (-4,-5)
- (x2,y2) = (-8,-2)
[tex] \tt \to \: m = \frac{ - 2-( - 5)}{ - 8 -(- 4)} [/tex]
[tex] \tt \to \: m = \frac{ -2+5}{ -8+4} [/tex]
[tex] \tt \to \: m = - \frac{3}{4} [/tex]
Now, Put the values in the formula used to find the equation ⤵️
[tex] \boxed{ \sf \:y - y_{1} = m(x - x_{1}) }[/tex]
- (x1,y1) = (-4,-5)
[tex] \tt \nrightarrow \: y - ( - 5) = - \frac{3}{4} (x - ( - 4))[/tex]
[tex] \tt \nrightarrow \: y + 5 = - \frac{3}{4} (x + 4)[/tex]
[tex] \tt \nrightarrow \: y + 5 = - \frac{3}{4} x - 3[/tex]
[tex] \tt \nrightarrow \: y = - \frac{3}{4} x - 3 - 5[/tex]
[tex] \bf\nrightarrow \: y = - \frac{3}{4} x - 8[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.