Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Recall that √x has a domain of x ≥ 0.
So, f(x) is defined as long as
(x + 1)/(x - 1) ≥ 0
• We have equality when x = -1
• Otherwise (x + 1)/(x - 1) is positive if both x + 1 and x - 1 are positive, or both are negative:
[tex]\begin{cases}x+1>0 \implies x>-1 \\ x-1>0 \implies x>1\end{cases} \implies x > 1[/tex]
[tex]\begin{cases}x+1<0 \implies x<-1 \\ x-1<0 \implies x<1\end{cases} \implies x<-1[/tex]
Then the domain of f(x) is
x > 1 or x ≤ -1
On the other hand, g(x) is defined by two individual square root expressions with respective domains of
• x + 1 ≥ 0 ⇒ x ≥ -1
• x - 1 ≥ 0 ⇒ x ≥ 1
but note that g(1) is undefined, so we omit it from the second domain.
Then g(x) is defined so long as both x ≥ -1 *and* x > 1 are satisfied, which means its domain is
x > 1
f(x) and g(x) have different domains, so they are not the same function.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.