Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Following the Hardy-Weinberg equilibrium theory, the frequency of the heter0zyg0us genotype is 2pq. In the exposed example, 2pq = 0.48.
Hardy-Winberg equilibrium
The Hardy-Weinberg equilibrium theory states that the allelic frequencies in a locus are represented as p and q.
Assuming a diallelic gene,
→ The allelic frequencies are
- p is the frequency of the dominant allele,
- q is the frequency of the recessive allele.
→ The genotypic frequencies after one generation are
- p² (H0m0zyg0us dominant genotypic frequency),
- 2pq (Heter0zyg0us genotypic frequency),
- q² (H0m0zyg0us recessive genotypic frequency).
If a population is in H-W equilibrium, it gets the same allelic and genotypic frequencies generation after generation.
The addition of the allelic frequencies equals 1 ⇒ p + q = 1.
The sum of genotypic frequencies equals 1 ⇒ p² + 2pq + q² = 1
If the allele A has a frequency of 0.6, and the allele B has a frequency of 0.4, then the frequency of the heter0zyg0us genotype is
2pq = 2 x 0.6 x 0.4 = 0.48
You can learn more about the Hardy-Weinberg equilibrium at
https://brainly.com/question/3406634
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.