Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
The sum of arithmetic sequence is:
[tex]s = \frac{n}{2} (2a(1) + (n - 1)d)[/tex]
The general term of arithmetic sequence:
[tex]a(n) = a(1) + (n - 1)d[/tex]
***********************************For P:********************************************
[tex]a(1) = 7 \\ d = 2 \\ a(n) = 101\\ \\ a(n) = 7 + (n - 1)2 \\ a(n) = 7 + 2n - 2 \\ a(n) = 2n + 5 \\ 101 = 2n + 5 \\ 2n = 101 - 5 \\ 2n = 96 \\ \frac{2n}{2} = \frac{96}{2} \\ n = 48[/tex]
Now we can find the sum of the arithmetic sequence by substituting (n=48 and a(1)=7)
[tex]s = \frac{n}{2} (2a(1) + (n - 1)d) \\ s = \frac{48}{2} (2(7) + (48 - 1)2) \\ s = 24(14 + 94) \\ s = 24(108) \\ s = 2592[/tex]
************************************For Q:********************************************
[tex]a(1) = 3 \\ d = 2 \\ a(n) = 99 \\ a(n) = 3 + (n - 1)2 \\ 99 = 3 + 2n - 2 \\ 99 = 2n + 1 \\ 2n = 98 \\ n = 49[/tex]
Now we can find the sum of the arithmetic sequence by substituting (n=49 and a(1)=)
[tex]s = \frac{n}{2} (2a(1) + (n - 1)d) \\ s = \frac{49}{2} (2(3) + (49 - 1)2) \\ s = \frac{49}{2} (6 + 96) \\ s = \frac{49}{2} (102) \\ s = 2499[/tex]
S(P)= 2592
S(Q)= 2499
Sum of (P) =Sum of (Q) + 93
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.