Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
See below
Step-by-step explanation:
Here we need to prove that ,
[tex]\sf\longrightarrow sin^2\theta + cos^2\theta = 1 [/tex]
Imagine a right angled triangle with one of its acute angle as [tex]\theta[/tex] .
- The side opposite to this angle will be perpendicular .
- Also we know that ,
[tex]\sf\longrightarrow sin\theta =\dfrac{p}{h} \\[/tex]
[tex]\sf\longrightarrow cos\theta =\dfrac{b}{h} [/tex]
And by Pythagoras theorem ,
[tex]\sf\longrightarrow h^2 = p^2+b^2 \dots (i) [/tex]
Where the symbols have their usual meaning.
Now , taking LHS ,
[tex]\sf\longrightarrow sin^2\theta +cos^2\theta [/tex]
- Substituting the respective values,
[tex]\sf\longrightarrow \bigg(\dfrac{p}{h}\bigg)^2+\bigg(\dfrac{b}{h}\bigg)^2\\[/tex]
[tex]\sf\longrightarrow \dfrac{p^2}{h^2}+\dfrac{b^2}{h^2}\\ [/tex]
[tex]\sf\longrightarrow \dfrac{p^2+b^2}{h^2} [/tex]
- From equation (i) ,
[tex]\sf\longrightarrow\cancel{ \dfrac{h^2}{h^2}}\\ [/tex]
[tex]\sf\longrightarrow \bf 1 = RHS [/tex]
Since LHS = RHS ,
Hence Proved !
I hope this helps.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.