Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

If 19th term of an A.P. is 844 and 844th term is 19 then find the term which is equal to zero?​

Sagot :

Let aₙ be the n-th term of the A.P.

Then for some fixed number d,

[tex]a_{844} = a_{843} + d[/tex]

[tex]a_{844} = (a_{842} + d) + d = a_{842} + 2d[/tex]

[tex]a_{844} = (a_{841} + d) + 2d = a_{841} + 3d[/tex]

and so on.

Notice how on the right side, the subscript of a and the coefficient of d always add up to 844. Follow this pattern all the way down to a₁₉ to get

[tex]a_{844} = a_{19} + 825d[/tex]

We're told that a₁₉ = 844 and a₈₄₄ = 19. Solve for d :

19 = 844 + 825d

825d = -825

d = -1

We can also write aₙ in terms of an arbitrary k-th term, aₖ, using the pattern from before:

[tex]a_n = a_k + (n - k) d[/tex]

Suppose aₖ = 0 for some value of k. Pick any known value of aₙ, replace d = -1, and solve for k :

a₈₄₄ = 0 + (844 - k) • (-1)

19 = k - 844

k = 863

So, a₈₆₃ = 0.

Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.