At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Using the binomial distribution, it is found that there is a 0.9844 = 98.44% probability that bohan goes to café georgia for a coffee today.
For each friend, there are only two possible outcomes, either they go to the cafe, or they do not. The probability of a friend going to the cafe is independent of any other friend, hence, the binomial distribution is used to solve this question.
What is the binomial distribution formula?
The formula is:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- There are 3 friends, hence n = 3.
- They all go to the cafe with a 3/4 probability, hence p = 3/4 = 0.75.
The probability at least one goes is:
[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]
In which:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{3,0}.(0.75)^{0}.(0.25)^{3} = 0.0156[/tex]
Then:
[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.0156 = 0.9844[/tex]
0.9844 = 98.44% probability that bohan goes to café georgia for a coffee today.
You can learn more about the binomial distribution at https://brainly.com/question/24863377
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.