Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Work Energy Theorem :-
- It states that net work done on any body is equal to the change in its kinetic energy .
We could derive this , as ;
- Consider a body of mass m being pushed by a force F acting along the horizontal , due to which it is displaced s m away .
- Since the angle between the force and the displacement is 0° , work done will be ,
[tex]\sf \longrightarrow Work = F s cos\theta \\ [/tex]
[tex]\sf \longrightarrow Work = (ma)(s)(cos0^o)\\[/tex]
[tex]\sf \longrightarrow\pink{ Work = m \ a \ s } \dots (i)[/tex]
- Now let's use the third equation of motion namely,
[tex]\sf \longrightarrow 2as = v^2 -u^2[/tex]
where the symbols have their usual meaning.
[tex]\sf \longrightarrow as =\dfrac{1}{2}(v - u)^2\\ [/tex]
Multiplying both sides by m,
[tex]\sf \longrightarrow mas = \dfrac{m}{2}(v-u)^2 [/tex]
Now from equation (i),
[tex]\sf \longrightarrow Work = \underbrace{\dfrac{1}{2}mv^2-\dfrac{1}{2}mu^2} [/tex]
Above term on RHS is change in the Kinetic energy , therefore ,
[tex]\sf \longrightarrow \underline{\boxed{\bf Work = \Delta Energy_{(Kinetic)} }}[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.