Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The volume of the solid of revolution is [tex]\frac{7\pi}{3}[/tex] cubic units.
How to find the volume of a solid of revolution with respect to an axis parallel to a Cartesian axis
The statement has been represented in the image attached below, the formula for the solid of revolution is presented below:
[tex]V = \pi \int\limits^{1}_{0} {[5\cdot y^{2}-2]^{2}} \, dy[/tex] (1)
[tex]V = \pi \int\limits^{1}_{0} {(25\cdot y^{4}-20\cdot y +4)} \, dy[/tex]
[tex]V = 25\pi\int\limits^1_0 {y^{4}} \, dy -20\pi\int\limits^1_0 {y^{2}} \, dy +4\pi\int\limits^1_0\, dy[/tex]
[tex]V = \frac{7\pi}{3}[/tex]
The volume of the solid of revolution is [tex]\frac{7\pi}{3}[/tex] cubic units. [tex]\blacksquare[/tex]
To learn more on solids of revolution, we kindly invite to check this verified question: https://brainly.com/question/338504

Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.