Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The depth of the swimming pool that is filled to the top is; 4 m
Snell's Law
I have attached a schematic diagram showing this question.
The correct width of the pool is 4 meters. Thus; w = 4 m
Incident Angle; θ₁ = 20°
A right angle is 90° and so the angle θ₂ is calculated from;
θ₂ = 90° - θ₁
θ₂ = 90° - 20°
θ₂ = 70°
We can use snell's law formula to find θ₃.
Thus;
n₁sinθ₂ = n₂sinθ₃
where;
n₁ is refractive index of air = 1
n₂ is refractive index of water = 1.33
Thus;
1*sin 70 = 1.33*sin θ₃
sin θ₃ = (sin 70)/1.33
Solving this gives;
θ₃ = 44.95°
By usage of trigonometric ratios we can find the depth of the pool using;
w/d = tan θ₃
Thus;
d = w/(tan θ₃)
d = 4/(tan 44.95)
d ≈ 4 m
Read more about Snell's Law at; https://brainly.com/question/10112549

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.