At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

what's the solution set for the inequality x^2-2x<8?

Sagot :

[tex]x^2-2x<8\\x^2-2x-8<0\\(x-4)(x+2)<0[/tex]

So, the numbers to base your solution set on are -2 and 4 (the numbers that the equation equal to 0)

Then, you plug in 3 numbers to the equation: a number less than -2, a number between -2 and 4, and a number greater than 4.  They represent the three sections of the number line created by the points -2 and 4.  So, our numbers will be -3, 0, and 5:

[tex](x-4)(x+2)<0\\(-3-4)(-3+2)<0\\(-7)(-1)<0\\7<0[/tex]

7<0 is incorrect, so the section of the number line less than -2 does not work.

[tex](x-4)(x+2)<0\\(0-4)(0+2)<0\\(-4)(2)<0\\-8<0[/tex]

-8<0 is correct, so the section of the number line between -2 and 4 works.

[tex](x-4)(x+2)<0\\(5-4)(5+2)<0\\(1)(7)<0\\7<0[/tex]

7<0 is incorrect, so the section of the number line above 4 does not work.

So, only the section between -2 and 4 works.  However, the problem is a "less than" problem, not a "less than or equal to" problem, so -2 and 4 are not included in the solution set.  That gives you the answer:

(-2, 4)          (NOT BRACKETS because -2 and 4 are not included)
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.