Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer: Choice D.
Morgan forgot to distribute the negative sign to two of the terms in the second expression.
=============================================================
Explanation:
Focus on the numerators.
We have (3t^2-4t+1) as the first numerator and we subtract off (t^2+2t+2) as the second numerator.
Morgan needs to simplify (3t^2-4t+1)-(t^2+2t+2) for the numerator.
Mistakenly, she had these steps
(3t^2-4t+1)-(t^2+2t+2)
3t^2-4t+1-t^2+2t+2 .... her mistake made here
(3t^2-t^2)+(-4t+2t)+(1+2)
2t^2-2t+3
All of this applies to the numerator. The denominator stays at t+3 the entire time. So effectively we can ignore it on a temporary basis.
Here's what Morgan should have for her steps when simplifying the numerator.
(3t^2-4t+1)-(t^2+2t+2)
3t^2-4t+1-t^2-2t-2 ..... distribute the negative
(3t^2-t^2)+(-4t-2t)+(1-2)
2t^2-6t-1
Note in the second step, the negative outside flips the sign of each term in the second parenthesis.
Therefore,
[tex]\frac{3t^2-4t+1}{t+3}-\frac{t^2+2t+2}{t+3}\\\\\frac{(3t^2-4t+1)-(t^2+2t+2)}{t+3}\\\\\frac{3t^2-4t+1-t^2-2t-2}{t+3}\\\\\frac{2t^2-6t-1}{t+3}\\\\[/tex]
which means [tex]\frac{3t^2-4t+1}{t+3}-\frac{t^2+2t+2}{t+3}=\frac{2t^2-6t-1}{t+3}, \ \ \text{ where } t \ne -3\\\\[/tex]
Side notes:
- The fractions can only be subtracted since the denominators are the same.
- We have [tex]t \ne -3[/tex] to avoid a division by zero error.
- Rational expressions are a fraction, or ratio, of two polynomials.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.