Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
[tex]\frac{4 + i}{3 - 2i} \\\\ = \frac{(4 + i)(3 + 2i)}{(3 - 2i)(3 + 2i)} \text{ (rationalising the denominator) } \\\\ = \frac{12 + 3i + 8i + 2i^2}{9 - 6i + 6i - 4i^2} \\\\ = \frac{12 + 11i + 2i^2}{9 - 4i^2} \\\\ = \frac{12 + 11i + 2(-1)}{9 - 4(-1)} \\\\ = \frac{10 + 11i}{13} \\\\ = \frac{10}{13} + \frac{11}{13}i[/tex]
[tex]Use:(a-b)(a+b)=a^2-b^2\\-------------------------\\\\\frac{4+i}{3-2i}=\frac{4+i}{3-2i}\cdot\frac{3+2i}{3+2i}=\frac{(4+i)(3+2i)}{(3-2i)(3+2i)}=\frac{4(3)+4(2i)+i(3)+i(2i)}{3^2-(2i)^2}\\\\=\frac{12+8i+3i+2i^2}{9-2^2i^2}=\frac{12+11i+2(-1)}{9-4(-1)}=\frac{12+11i-2}{9+4}=\frac{10+11i}{13}\\\\=\boxed{\frac{10}{13}+\frac{11}{13}i}\\\\z=a+bi\Rightarrow a=\frac{10}{13}\ and\ b=\frac{11}{13}[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.