Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The third ordered pair that satisfy the given equation is (123, 369).
The given parameters;
- [tex]a^2 + b^2 = 10(123)^2[/tex]
- First pair of the equation, = (39, 387)
- Second pair of the equation = (201, 333).
The third ordered pair of the equation can be determined by using general equation of a circle;
[tex]a^2 + b^2 = r^2\\\\a^2 + b^2 = (123\sqrt{10} )^2\\\\a^2 + b^2 = (\sqrt{151290} )^2\\\\a^2 + b^2 = 151290\\\\a^2 = 151290- b^2\\\\ a= \sqrt{151290 - b^2}[/tex]
The radius of the circle is calculated as;
[tex]r^2 = 151290\\\\r = \sqrt{151290} \\\\r = 388.96[/tex]
The value of a can be obtained by randomly choosing numbers less than the radius as values of b.
[tex]b < r\\\\b < 388.96[/tex]
[tex]a = \sqrt{151290 \ - \ (387)^2} \\\\a = 39\\\\(39, \ 387)\\\\a = \sqrt{151290 \ - \ (333)^2}\\\\a = 201\\\\(201, \ 333)\\\\a = \sqrt{151290 \ - \ (369)^2}\\\\a = 123\\\\(123, \ 369)[/tex]
Thus, the third ordered pair that satisfy the given equation is (123, 369).
Learn more about equation of circle here: https://brainly.com/question/1506955
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.