Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
[tex]2 \sec^2 x = 3- \tan x \\\\\implies 2(1 +\tan^2 x) = 3- \tan x \\\\\implies 2 + 2 \tan^2 x +\tan x -3 =0\\\\\implies 2 \tan^2 x + \tan x -1 =0\\\\\implies 2u^2 + u -1 =0~~~ ;[\text{set} \tan x = u]\\\\\implies u = \dfrac{-1\pm \sqrt{1-4\cdot 2 \cdot (-1)}}{2(2)}\\\\\implies u =\dfrac{-1 \pm\sqrt{9}}{4}\\\\\implies u = \dfrac{-1 \pm 3}{4}\\\\\implies u = \dfrac{2}{4}=\dfrac 12~~ \text{or} ~~u =\dfrac{-4}{4} =-1\\\\[/tex]
[tex]\implies \tan x = \dfrac 12 ~~ \text{or} ~~ \tan x =-1~~~ ;[\text{Substitute back u =tan x}]\\\\\text{Now,}~ \\\\\tan x = -1,\\\\\implies x = n\pi - \dfrac{\pi}4\\\\\\\text{For interval,}~ [0,2\pi) \\\\x = \dfrac{3\pi}4, \dfrac{7\pi}4\\\\\text{In degrees,}~ x = 135^{\circ}, x =315^{\circ}\\\\\tan x = \dfrac 12\\\\\implies x = n\pi + \tan^{-1} \left(\dfrac 12 \right)\\\\\text{For interval} ~[0,2\pi),\\\\[/tex]
[tex]x=\tan^{-1} \left(\dfrac 12 \right), \left[\pi +\tan^{-1} \left( \dfrac 12 \right)\right]\\\\\text{in degrees,} ~~x=\tan^{-1} \left(\dfrac 12 \right), \left[180^{\circ} +\tan^{-1} \left( \dfrac 12 \right)\right]\\\\\\\\\text{Combine all solutions:}\\\\x=\dfrac{3\pi}4, \dfrac{7\pi}4, \tan^{-1} \left(\dfrac 12 \right), \left[\pi +\tan^{-1} \left( \dfrac 12 \right)\right]\\\\\\[/tex]
[tex]\text{In degrees,}~ x = 135^{\circ},~315^{\circ},~\tan^{-1} \left(\dfrac 12 \right), \left[180^{\circ} +\tan^{-1} \left( \dfrac 12 \right)\right][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.