Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

A population of bacteria is growing according to the exponential model P = Ce^kt, where P is the number of colonies and t is measured in hours. If there were 120 colonies present initially, and there are 550 colonies present after 4 hours, what is k, the population's growth rate?

Sagot :

we know that initially there were 120 colonies or namely that C = 120, well, what time was that? that was the hour 0, or namely t = 0, so then

[tex]P=Ce^{rt}\qquad \begin{cases} P=\textit{accumulated amount}\\ C=\textit{initial amount}\dotfill &120\\ r=rate\to r\%\to \frac{r}{100}\\ t=\textit{elapsed time}\dotfill &0\\ \end{cases} \\\\\\ P=120e^{r\cdot 0}\implies P=120e^0\implies P=120\cdot 1\implies P=120[/tex]

we also know that when t = 4, C = 550

[tex]\textit{Amount of Population Growth} \\\\ P=Ce^{rt}\qquad \begin{cases} P=\textit{accumulated amount}\dotfill&120\\ C=\textit{initial amount}\dotfill &550\\ r=rate\to r\%\to \frac{r}{100}\\ t=\textit{elapsed time}\dotfill &4\\ \end{cases} \\\\\\ 120=550e^{4r}\implies \cfrac{120}{550}=e^{4r}\implies \cfrac{12}{55}=e^{4r}~\hfill \stackrel{\textit{using this log cancellation rule}}{\log_a(a^x)=x}[/tex]

[tex]\log_e\left( \frac{12}{55}\right)=\log_e(e^{4r})\implies \log_e\left( \frac{12}{55}\right)=4r\implies \ln\left( \frac{12}{55}\right)=4r \\\\\\ \cfrac{\ln\left( \frac{12}{55}\right)}{4}=r\implies -0.381\approx r = k[/tex]

Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.