Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Using the Factor Theorem, it is found that it is possible for a trinomial with a leading coefficient not equal to 1 have two identical factors, and an example is:
[tex]f(x) = 2(x - 1)^2(x - 2)[/tex]
The Factor Theorem states that a polynomial function with roots [tex]x_1, x_2, \codts, x_n[/tex] is given by:
[tex]f(x) = a(x - x_1)(x - x_2) \cdots (x - x_n)[/tex]
- In which a is the leading coefficient.
In this problem:
- Leading coefficient of [tex]a = 2[/tex].
- Identical factors at x = 1, hence [tex]x_1 = x_2 = 1[/tex].
- A trinomial has three factors, hence for example another one at x = 3, hence [tex]x_3 = 3[/tex]
Then, the example of the trinomial is:
[tex]f(x) = 2(x - 1)^2(x - 2)[/tex]
You can learn more about the Factor Theorem at https://brainly.com/question/24380382
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.