Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Explanation:
a) The height of the ball h with respect to the reference line is
[tex]h = L - L\cos{31°} = L(1 - \cos{31°})[/tex]
so its initial gravitational potential energy [tex]U_0[/tex] is
[tex]U = mgh = mgL(1 - \cos{31°})[/tex]
[tex]\:\:\:\:\:=(0.25\:\text{kg})(9.8\:\text{m/s}^2)(0.65\:\text{m})(1 - \cos{31})[/tex]
[tex]\:\:\:\:\:=0.23\:\text{J}[/tex]
b) To find the speed of the ball at the reference point, let's use the conservation law of energy:
[tex]\Delta{K} + \Delta{U} = 0 \Rightarrow K_0 + U_0 = K + U[/tex]
We know that the initial kinetic energy [tex]K_0,[/tex] as well as its final gravitational potential energy [tex]U[/tex] are zero so we can write the conservation law as
[tex]mgL(1 - \cos{31°}) = \frac{1}{2}mv^2[/tex]
Note that the mass gets cancelled out and then we solve for the velocity v as
[tex]v = \sqrt{2gL(1 - \cos{31°})}[/tex]
[tex]\:\:\:\:\:= \sqrt{2(9.8\:\text{m/s}^2)(0.65\:\text{m})(1 - \cos{31°})}[/tex]
[tex]\:\:\:\:\:= 1.3\:\text{m/s}[/tex]
Answer:
a. 0.23J
b. 1.35 m/s
Explanation:
a. U = mgh where where m = mass of the object, g = acceleration due to gravity, and h = height
h = L - Lcos(θ) where L = length of the rope, and θ = angle with respect to vertical.
Therefore, U = mg(L - Lcos(θ))
U = 0.25 * 9.8 (0.65m - 0.65cos(31° ))
U = 0.2275 ≈ 0.23J
The gravitational potential energy of the ball before it is released = 0.23J
b. To determine the velocity of the object at the bottom of its motion, all of the energy has gone from gravitational potential into kinetic since at the bottom, the problem says that U = 0. The kinetic energy of an object is given by the following equation:
[tex]K.E=\frac{I}{2}*mv^{2}[/tex]
where m = mass of the object and v = velocity of the object. Since we know that all of the energy was transferred into kinetic energy at the bottom, we can conclude that:
[tex]0.2275=\frac{1}{2} *0.25*v^{2}[/tex]
[tex]v^{2}=\frac{2*0.2275}{0.25}[/tex]
[tex]v^{2}=1.82[/tex]
[tex]v=\sqrt{1.82}=1.3491\\[/tex] ≈ [tex]1.35m/s[/tex]
Therefore, the speed of the ball when it reaches the bottom = 1.35m/s
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.