Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The joint distribution of the numbers of the three colours in the sample without replacement is:
[tex]\mathbf{P(A=a,B=b,C=c) = \dfrac{\Big( ^{p}_{ A} \Big) \Big( ^{q}_{ B} \Big) \Big( ^{r}_{ C} \Big) }{ \mathbf{\Big( ^{p+q+r}_{ \ \ \ n} \Big) } }\ \ \ \ where; n = A+B+C}[/tex]
Let consider A, B, and C to denote the three variables that are black, white, and red balls in the sample.
i.e.
- n = A + B + C
Now, the numbers of ways 'n' balls are chosen without replacement in an urn that comprises of p black balls, q white balls, and r red balls can be computed as follows:
[tex]\mathbf{\implies \Big( ^{p+q+r}_{ \ \ \ n} \Big) }[/tex]
Now, the number of ways whereby A black balls can be chosen from p black balls is expressed as:
[tex]\mathbf{\implies \Big( ^{p}_{ A} \Big) }[/tex]
The number of ways whereby B white balls can be chosen from q white balls is expressed as:
[tex]\mathbf{\implies \Big( ^{q}_{ B} \Big) }[/tex]
The number of ways whereby C red balls can be chosen from r red balls is expressed as:
[tex]\mathbf{\implies \Big( ^{r}_{ C} \Big) }[/tex]
Therefore, we can conclude that the joint distribution of the numbers of the three colours in the sample without replacement is:
[tex]\mathbf{P(A=a,B=b,C=c) = \dfrac{\Big( ^{p}_{ A} \Big) \Big( ^{q}_{ B} \Big) \Big( ^{r}_{ C} \Big) }{ \mathbf{\Big( ^{p+q+r}_{ \ \ \ n} \Big) } }\ \ \ \ where; n = A+B+C}[/tex]
Learn more about joint distribution here:
https://brainly.com/question/17283589?referrer=searchResults
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.