Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
9514 1404 393
Answer:
- vertical scale ×2; translate (-1, -5); (-1, -5), (0, -3), (-2, -3)
- vertical scale ×1/2; translate (3, 1); (3, 1), (1, 3), (5, 3)
- reflect over x; vertical scale ×2; translate (-3, -4); (-3, -4), (-2, -6), (1, -8)
Step-by-step explanation:
Transformation of parent function f(x) into g(x) = c·f(x-h)+k is a vertical scaling by a factor of c, and translation by (h, k) units to the right and up. If c is negative, then a reflection over the x-axis is also part of the transformation. Once you identify the parent function (here: x² or √x), it is a relatively simple matter to read the values of c, h, k from the equation and list the transformations those values represent.
For most functions, points differing from the vertex by 1 or 2 units are usually easily found. Of course, the vertex is one of the points on the function.
1.
(c, h, k) = (2, -1, -5)
- vertical scaling by a factor of 2
- translation 1 left and down 5
Points: (-1, -5), (-2, -3), (0, -3)
__
2.
(c, h, k) = (1/2, 3, 1)
- vertical scaling by a factor of 1/2
- translation 3 right and 1 up
Points: (3, 1), (1, 3), (5, 3)
__
3.
(c, h, k) = (-2, -3, -4)
- reflection over the x-axis
- vertical scaling by a factor of 2
- translation 3 left and 4 down
Points: (-3, -4), (-2, -6), (1, -8)
_____
Additional comment
For finding points on the parabolas, we use our knowledge of squares and roots:
1² = 1, 2² = 4
√1 = 1, √4 = 2

We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.