Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

A team must be composed of 7 members (three women and four men), in how many ways can this team be chosen from a group of seven women and eight men?

Sagot :

9514 1404 393

Answer:

  2450

Step-by-step explanation:

The function C(n, k) = n!/(k!(n-k)!) tells how many ways k items can be chosen from n. The function can also be written nCk.

The number of ways the team can be formed is the product of the number of ways the women can be chosen and the number of ways the men can be chosen. This will be ...

  (7C3)(8C4) = 35×70 = 2450

The team can be chosen 2450 ways from the given group.