Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
a) 20s
b) 500m
Explanation:
Given the initial velocity = 100 m/s, acceleration = -10m/s^2 (since it is moving up, acceleration is negative), and at the maximum height, the ball is not moving so final velocity = 0 m/s.
To find time, we apply the UARM formula:
v final = (a x t) + v initial
Replacing the values gives us:
0 = (-10 x t) + 100
-100 = -10t
t = 10s
It takes 10s for the the ball to reach its max height, but it must also go down so it takes 2 trips, once going up and then another one going down, both of which take the same time to occur
So 10s going up and another 10s going down:
10x2 = 20s
b) Now that we have v final = 0, v initial = 100, a = -10, t = 10s (10s because maximum displacement means the displacement from the ground to the max height) we can easily find the displacement by applying the second formula of UARM:
Δy = (1/2)(a)(t^2) + (v initial)(t)
Replacing the values gives us:
Δy = (1/2)(-10)(10^2) + (100)(10)
= (-5)(100) + 1000
= -500 + 1000
= 500 m
Hope this helps, brainliest would be appreciated :)
a) 20s
b) 500m
Explanation:
Given the initial velocity = 100 m/s, acceleration = -10m/s^2 (since it is moving up, acceleration is negative), and at the maximum height, the ball is not moving so final velocity = 0 m/s.
To find time, we apply the UARM formula:
v final = (a x t) + v initial
Replacing the values gives us:
0 = (-10 x t) + 100
-100 = -10t
t = 10s
It takes 10s for the the ball to reach its max height, but it must also go down so it takes 2 trips, once going up and then another one going down, both of which take the same time to occur
So 10s going up and another 10s going down:
10x2 = 20s
b) Now that we have v final = 0, v initial = 100, a = -10, t = 10s (10s because maximum displacement means the displacement from the ground to the max height) we can easily find the displacement by applying the second formula of UARM:
Δy = (1/2)(a)(t^2) + (v initial)(t)
Replacing the values gives us:
Δy = (1/2)(-10)(10^2) + (100)(10)
= (-5)(100) + 1000
= -500 + 1000
= 500 m
Hope this helps, brainliest would be appreciated :)
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.