Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The equation of the tangent to L at the point p(3/2, [tex]\sqrt[/tex]7/2) will be equal to y+[tex]\sqrt[/tex]7x/3=0
What is tangent?
A straight line or plane that touches a curve or curved surface at a point, but if extended does not cross it at that point.
It is given that the equation of a circle is given by:
[tex]x^2+y^2=4[/tex]
Slope formula: If a line passes through two points, then the slope of the line is
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
The endpoints of the radius are O(0,0) and P( 3/2,[tex]\sqrt[/tex]7/2). So, the slope of the radius is
Now by putting the values in the formula:
[tex]m=\dfrac{\dfrac{3}{2}-0}{\dfrac{\sqrt{7}}{2}-0}[/tex]
[tex]m=\dfrac{3}{\sqrt{7}}[/tex]
Now the Product of slopes of two perpendicular lines is always -1.
Let the slope of tangent line l is m. Then, the product of slopes of line l and radius is -1.
[tex]m\times m_1=-1[/tex]
[tex]m_1\times \dfrac {3}{\sqrt{7}}=-1[/tex]
[tex]m_1=\dfrac{-\sqrt{7}}{3}}[/tex]
The slope of line l is -[tex]\sqrt[/tex]7/3 and it passes through point P(3/2,[tex]\sqrt[/tex]7/2). So, the equation of line l is
[tex]y-y_2=m(x-x_2)[/tex]
[tex]y-\dfrac{\sqrt{7}}{2}=\dfrac{-\sqrt{7}}{3}(x-\dfrac{3}{2})[/tex]
[tex]y-\dfrac{\sqrt{7}}{2}=\dfrac{-\sqrt{7}}{3}x-\dfrac{-\sqrt{7}}{3} \times \dfrac{3}{2})[/tex]
[tex]y=\dfrac{-\sqrt{7}}{3}x[/tex]
Hence the tangent to L at the point P will have a slope of [tex]y=\dfrac{-\sqrt{7}}{3}x[/tex]
To know more about Tangent follow
https://brainly.com/question/4470346
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.