Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
If this exact question is repeatedly deleted, it's probably because of the ambiguity of the given equation. I see two likely interpretations, for instance:
[tex]\dfrac{(5\times5)^k}{5^{-8}} = 5^3[/tex]
or
[tex]\dfrac{5\times 5^k}{5^{-8}} = 5^3[/tex]
If the first one is what you intended, then
[tex]\dfrac{(5\times5)^k}{5^{-8}} = \dfrac{(5^2)^k}{5^{-8}} = \dfrac{5^{2k}}{5^{-8}} = 5^{2k-(-8)} = 5^{2k+8} = 5^3[/tex]
and it follows that
2k + 8 = 3 ==> 2k = -5 ==> k = -5/2
If you meant the second one, then
[tex]\dfrac{5\times 5^k}{5^{-8}} = \dfrac{5^1\times5^k}{5^{-8}} = \dfrac{5^{k+1}}{5^{-8}} = 5^{k+1-(-8)} = 5^{k+9} = 5^3[/tex]
which would give
k + 9 = 3 ==> k = -6
And for all I know, you might have meant some other alternative... When you can, you should include a picture of your problem.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.