Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The annuity that should be worth after 6 years is $63,900.
Given that,
- The present value is $4,500.
- The semi-annual time period should be = 6 × 2 = 12.
- The rate of interest on semi-annual basis should be = 6% ÷ 2 = 3%
Now the following formula should be used:
[tex]Amount = Present\ value \times \frac{(1+ rate)^{(n)} - 1} {rate}\\\\= \$4,500 \times \frac{(1+0.03)^{12} - 1}{0.03}\\\\= \$4,500 \times \frac{0.4257}{0.03}\\\\= \$4,500 \times 14.1920\\\\= \$63,864\\\\= \$63,900[/tex]
Therefore we can conclude that the annuity that should be worth after 6 years is $63,900.
Learn more about the annuity here: brainly.com/question/17096402
Answer: 63900
Step-by-step explanation: Use the savings annuity formula
PN=d((1+r/k)N k−1)r/k
to calculate the value of P6. The question states that r=0.06, d=$4,500, k=2 compounding periods per year, and N=6 years. Substitute these values into the formula results in
P6=$4,500 ((1+0.06/2)6⋅2−1)/(0.06/2).
Simplifying, we have P6=$4,500 ((1.03)12−1)/(0.03). Therefore P6=$63,864.13. Our final answer is 63900.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.